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Abstract. Exact numerical data on self-avoiding walks are presented for the irregular 
network studied by Finney in connection with the Bernal model of a liquid and for a 
face-centred cubic lattice with randomly removed bonds. Averages for the total _number of 
walks E,,, and polygonal closures o,,, are defined and found to be consistent with C,, - pnng, 
U,, -pnnh where the critical parameters g and h have the same values as those obtained 
from the regular lattices. The mean-square end-to-end distances ( R i }  are also studied and 
the critical parameter 8 is found to have the usually accepted value of 6 /5 .  Our results add 
further support to the conjecture that these exponents depend only on the dimensionality 
and are not affected by the irregularity of the network. 

1. Introduction 

Much of the recent work on phase transitions has been directed towards a study of the 
critical exponents and their inter-relationship. The similarity in the magnitude of 
corresponding exponents obtained from widely different physical processes suggests 
that there are some aspects of phase transitions that are independent of the detailed 
nature of the individual processes. However, there are notable differences and one of 
the main problems is to find which features have a significant effect. Some understand- 
ing of what is involved comes from a detailed study of simplified theoretical models. For 
example, in the case of the liquid-gas transition the failure of the classical van der Waals 
method has led to an extensive study of the lattice gas. Although the results obtained 
from this model compare favourably with the experimental values of the critical 
exponents, there are small but significant differences (see Kadanoff et a1 1967). 

Unfortunately, one of the unsatisfactory features of the lattice gas is that it imposes a 
long-range spatial order on the 'liquid' state. Real liquids do not possess such an order 
and it has been suggested that this lack of long-range spatial order in real liquids may be 
responsible for the difference between the experimental and theoretical values of the 
exponents. Indeed, Bernal(l964) has argued that one of the characteristic features of 
the liquid state is its irregularity, a feature that is not utilized in the conventional 
approaches to the liquid state. While his idea of a statistical geometry has many 
appealing features, the absence of a suitable mathematical description has made it 
impossible to say precisely what effect this irregularity will have on the thermodynamic 
properties. 

Indeed, the question of irregularity is not only of relevance to the liquid state. 
Recently there has been considerable interest in amorphous alloys and their properties, 
in particular amorphous ferromagnetism. Here also the basic problem is to find out how 
the irregularity will affect the ferromagnetic properties. 
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In this paper we will try to gain an insight into this question by applying to irregular 
networks some of the techniques that have proved so successful for regular lattices. 
Rather than attempt to evaluate exact thermodynamic properties, we will limit our 
considerations to what Domb (1970) calls the self-avoiding walk approximation. The 
raison d'2tre for this approximation is based on evidence obtained from the exact 
numerical investigations on regular lattices. These show that in the initial stages of each 
expansion of a thermodynamic function the largest contribution comes from one 
particular type of basic graph. For example, in the specific heat expansion this graph is a 
polygon, while for the pair-correlation function and the susceptibility it is in the chain. 
Although other graphs eventually do make a significant contribution to the expansion 
coefficients, the critical exponents will reflect, to some extent, the properties of the 
self-avoiding walks. Consequently, if the spatial irregularity of the underlying structure 
does, in fact, change the critical behaviour we would expect these effects to become 
apparent in the properties of the self-avoiding walks. 

The properties of the walks themselves can also have direct physical significance. 
For example, light scattering in dilute polymer solutions can be related to the mean- 
square end-to-end distance of the individual molecules. Much of the information for 
this quantity has come from analysing walks on regular lattices. However, the use of a 
regular network has often been criticized because it imposes an artificial constraint on 
the end points of the polymer. We will show that this criticism is not valid. 

From the data obtained on the regular lattices, it has been conjectured that for 
large n 

C,, = p n n g ;  U,, = p n n h  and ( R : ) - A n e  (1) 

where C,, is the exact number of self-avoiding walks of n steps, (Rf) their mean-square 
end-to-end distance, and U,, is the number of n-sided self-avoiding polygons (see 
Domb 1970). The connective constant p has the same value for walks and polygons. 
Furthermore the numerical evidence also suggests that g, h and 8 are simple fractions 
that depend only on the dimensionality and not on the details of the individual 
structures. The specific purpose of this paper is to see whether this situation is altered 
when the underlying network is irregular. 

2. Thenetworks 

We have obtained data for the walks from two basically different irregular networks, the 
random packing (RP) network and the mutilated face-centred cubic (MFCC) network. 
The former is generated from the sphere-centre coordinate data obtained by packing 
together about 8000 equal radii steel ball-bearings at a maximum density of 0.637 
(Finney 1970). A network with an average coordination number of 6.259 is con- 
structed by joining the centres of touching spheres. This network combines a varying 
connectivity with a random spatial distribution of nodes. 

An MFCC network is obtained from a computer-simulated regular face-centred 
cubic lattice by eliminating bonds chosen at random. The mean coordination number 4 
is, of course, determined by the number of bonds eliminated. In this network the nodes 
occupy the same spatial positions as they did in the original regular FCC lattice but the 
connectivity varies randomly from point to point. 

In order to see whether the spatial randomization of nodes in the RP network 
produces any significant differences we have analysed in some detail the data obtained 
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from an MFCC network with 4 = 6.25. In figure 1 we compare the neighbour distribu- 
tion functions for these two networks. 

We have also carried out a limited investigation of the properties of walks on MFCC 
networks with a = 8, 6 and 5 .  These data support the results obtained from the 6.25 
model and will not be presented here. However, in 0 5 ,  we will make use of the 
end-to-end data obtained from = 8. 

0 3 -  M F C C [ q = 6 2 5 )  RP model 

6 25 
1768 

Skewness 1 2 7 ~ 1 0 ~  
Kurtosis 2761. 

>r 

[L 

' 3 6 9 1 2  1 3 5 7 9  
9 9 

Figure 1. Coordination distribution functions for the MFCC ( 4  = 6.25) and the RP model. 

3. Method of analysing results 

The asymptotic forms (1) indicate that successive walk ratios should lead to a linear plot 
against l / n ,  at least for large n because 

and 

For regular lattices these ratios quickly settle onto a straight line and it is found that 
even for values of n s 10 the ratios can be extrapolated to their limiting behaviour for 
large n with some degree of confidence. Indeed, the extensive numerical data now 
available for the regular structures show that once a straight line behaviour appears, 
ratios for higher n confirm the initial trends and allow a more accurate determination of 
g,  h, 8 and p. 

In the case of the irregular networks, each and every centre has a different 
environment so that the number of walks will depend on the startingpoint and therefore 
we obtain a set of exact values Cn(i), U,(i) and (Ri(i))  for each centre i. If we plot 
Cn(i)/Cn-l(i) or Un(i)/Un-l(i) against l / n  we find no regular behaviour. The fluctua- 
tions are large and very little can be learnt from the individual walks. On the other hand 
the ratios ( R ~ + l ( i ) ) / ( R ~ ( i ) )  are much smoother and extrapolation of the individual ratio 
plots is feasible. 
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Since we are primarily interested in the average properties of the networks it would 
seem appropriate to look at the behaviour of the walks when they are averaged over a 
number of different origins. We could choose either the arithmetic mean formed by 

N 
N1 C,(i) = C,, (A) 

i = l  

or we can consider the geometric mean 

Here, N is the total number of different centres used as the origin for each set of walks. 
When the ratios of these means, i.e., either C,(A)/C,,-,(A) or C,,(G)/C,-l(G) are 

plotted against l / n  the fluctuations are considerably reduced and linear plots appear 
for both sets of averages. Indeed, although it is well known that for any distribution the 
geometric mean is always less than the corresponding arithmetic mean, we find that 
within our confidence limits it is not possible to distinguish between the results obtained 
from the two methods of averaging. Therefore in this paper we will only report the 
results obtained by using the arithmetic mean. 

The maximum value of n that can be investigated is limited by two factors: (a) the 
size of the network available, and ( 6 )  the number of centres that must De averaged over 
in order to reduce sufficiently the fluctuations in the ratio plot. Unfortunately, the size 
of the RP model is limited by the 8000 ball-bearings used in setting up the network and 
we found that we could only use n s 7 for the walks and n s 10 for the polygons. This 
gave a sample of 49 centres which could act as origins for the walks. 

The MFCC network is limited only by computing time considerations. However, we 
found that for the purposes of this paper adequate results could be obtained with n S 8 
for walks and n S 10 for polygons using a sample of 40 different initial points. 

4. Results for self-avoiding walks and polygons 

In figure 2 we present a l / n  plot of the ratios p, =C,,(A)/C,-l(A) and v, = 
U,,(A)/U,-l(A) obtained from the MFCC network with 4 = 6025, while in figure 3 we 
present the corresponding ratios for the RP network. These graphs are very similar to 
the corresponding ones obtained from the regular FCC lattice (see Domb 1969). The 
data which we will analyse in detail below is again consistent with the conjecture 
limn+m p, = limn+m Y, = p. This result has been shown to be rigorously true for a 
simple cubic network by Hammersley (1961). Although cubic symmetry has been used 
to construct this proof, it is probably not essential and our results confirm this fact. 

In order to find the critical constants we will follow the methods used by Hiley and 
Sykes (1961), and Martin et a1 (1967) for the regular lattices. The quantity p is first 
estimated for the RP network by forming the linear extrapolants B, = np, - (n - l)p,,-,, 
In the case of the MFCC network we use B,* = np,, - (n - 2)pn-2 to take account of the 
small odd-even effect that appears in the data. These results arc presented in tables 1 
and 2 .  Since we only have a limited amount of data we have found it necessary to 
compare our results with the corresponding results obtained for the regular FCC lattice. 
These are presented in table 3. The steady increase in the B, for the regular lattice has 
been fully exploited by the methods used in Martin er a1 (1967). Unfortunately, our 
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Figure 2. Ratio plot for MFCC (4 = 6.25). Self-avoiding walks p n  = C,(A)/C,-,(A) and 
polygonal closures Y, = U,,(A)/U,- , (A)  against l /n .  
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Figure 3. Ratio plot of RP model. Self-avoidingwalks p,, = C,, (A) jCn-,(A) and polygonal 
closures v, = U , ( A ) / U , _ , ( A )  against l/n. 

data from both irregular networks show remanent fluctuations and we must modify 
their procedure. As a first approximation to k we will take the mean of the last three 
readings of B,. For the regular FCC lattice this gives pFcc = 10.020 whereas the best 
estimate is 10.035, a difference of only 0.15%. For the irregular networks we estimate 
, ~ R p = 5 * 1 5 1  and kMFCC=5.048. 

These approximate values of p can now be used to estimate g and h. We do this by 
first forming the sequences 

g, = ( W , / P )  - n 

h, = ( n v , / p )  - n. 

( 5 )  

(6) 
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Table 1. Analysis of Cn(A) and Un(A) for RP network. 

n Pn Bn gn n V" -hn 

2 5.7177 5 3.2313 1.863 
3 5.5181 5.119 0.214 6 3.6159 1.788 

5.4173 5.115 0.207 7 3.8356 1.787 4 
5 5.3503 5.082 0.193 8 3.9422 1.877 
6 5.3144 5.135 0.190 9 4.1726 1.709 
7 5.3030 5.235 0.207 10 4.2560 1.737 

Mean of last 
three terms 
p 4 , 1 5 1  

Table 2. Analysis of C,(A) and Un(A) for MFCC (4 = 6.25) network. 

2 5,6284 5 3.2669 1.764 
3 5.3307 0.230 6 3.3770 1.986 
4 5.2909 4.953 0.192 7 3.8256 1.695 
5 5.2255 5.068 0.176 8 3.9309 1.770 
6 5.2041 5.030 0.185 9 4.0548 1.771 
7 5.1746 5.047 0.175 10 4.1669 1.745 

Mean of last 
three terms 
p = 5.048 

Table 3. Analysis of Cn and U,, for regular FCC lattice. 

n P" Bn gn n VII -hn 

2 1 1 .oooo 5 6.3636 1.825 
3 10.6364 9.909 0.184 6 6.9286 1.85 1 
4 10.4701 9.971 0.180 7 7.4186 1.817 
5 10.3763 10.001 0.178 8 7.7949 1.776 
6 10.3173 10.022 0.178 9 8,0593 1.761 
7 10,2764 10.031 0.179 10 8.2637 1.753 

Mean of last 
three terms 

Best estimate 
p = 10.020 g + 0.167 h + -1.75 

/L = 10.035 

For the regular FCC lattice we find the expected steady decrease in g, except for the 
last value which actually increases. This rise is due to our underestimating p and does 
not occur if we use p = 10.035. Martin et a1 (1967) have shown that with larger values 
of n the sequence g, appears to be approaching the conjectured limit g = 2. 

The MFCC network shows an overall decrease in g, towards the same value although 
it is somewhat masked by small fluctuations. The RP network also shows a steady 
decrease although the actual values are rather higher and there is a rise in the value of g, 
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similar to the one found in our limited analysis of the regular FCC lattice. This, again, is 
probably due to a small underestimation of the value pRp. 

The data for polygonal closures on both irregular networks seem to show the same 
general trends that are found for the regular FCC lattice and it appears to be consistent 
with the conjectured value h = -:. We have tried more refined ways of analysing our 
data by using, for example, the Pad6 approximant method but these do not lead to a 
more accurate assessment of the critical parameters. 

5. Results for the mean-square end-to-end distance 

The ratios ( R  i+ l ( i ) ) / (Ri ( i ) )  for individual centres on both irregular networks give 
remarkably good straight lines when plotted against l / n .  This line becomes even 
smoother when we average over a number of initial centres. The usual way of 
estimating the value of 8 is to use equation (4) to form the sequence 

e, = n[((R2,+1(A))/(R2,(A)))- 11. (7) 
We have calculated these sequences for the RP network and for two MFCC networks, 

one with 4 = 8 and the other with 4 = 6.25. The results are presented in figure 4. The 
corresponding values for the regular FCC lattice are also included. This graph shows 
that the RP values are steadily approaching the conjectured limit 8 = 1.2 whereas the 
MFCC values with 4 = 6.25 appear to be moving very slightly away from this limit. On 
the other hand the values for the MFCC network with 4 = 8 appear to be approaching 1.2 
again after an initial decrease. Even though it is not possible to extrapolate these results 
with any degree of confidence, it should be noted that the values of 0, are already well 
within *2% of the conjectured limit. 

1 2 * 3  

12L t'\.,.l i 

1161 I I I I I I I  I 1  
2 3 L 5 6 7  10 20 

1 / n  

Figure 4. 0, as a function of l /n.  

6. Conclusions 

Apart from small fluctuations in the averaged data, the overall behaviour of the 
averaged walks on the irregular network is remarkably similar to the corresponding 
behaviour for the walks on the regular FCC lattice and we can find no evidence to suggest 
that the irregularity of the network will affect the critical exponents that arise in the 
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self-avoiding walk problem. Our results for the mean-square end-to-end distances are 
of particular interest. Here we might have expected to find some detectable change 
when the end points of the walks are randomly distributed in space rather than being 
confined to the regular lattice points. Although the earlier terms do show some 
differences these are smaller than the differences found between the regular lattices (see 
Domb 1970, Martin and Watts 1971). 

The effects of irregularity on the critical exponents of the thermodynamic properties 
of an Ising-like model are a little more difficult to assess. The higher coefficients of the 
series have significant contributions from graphs other than chains and polygons. 
Although we have not analysed these contributions in detail it is difficult to see how 
they could be significantly affected by the irregularity of the underlying network 
particularly in view of the results that have been obtained from the various three- 
dimensional regular lattices. Indeed in the critical region the correlation functions 
decay very slowly with distance so one would not expect the finer details of the lattice 
structure to matter (see Kadanoff et a1 1907). These considerations seem to suggest 
that the difference between the critical exponents for the liquid-gas transitions and 
those predicted by the lattice gas model are unlikely to be entirely accounted for by the 
spatial irregularity that is present in real liquids although Gaunt and Domb (1975) have 
reported the presence of some structural effects in the density expansion of a lattice gas. 
We are at present unable to say anything meaningful about the effects of irregularity on 
the thermodynamic properties away from the critical region. 
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